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1 Prelims

1. A student didn’t notice a multiplication sign between two 3 digit numbers and wrote it
as a single 6 digit number. The resultant number was 7 times more than what it should
have been.
Find the numbers.

Answer: 143, 143
Solution:

Let the two numbers be u and v.
The problem is equivalent to solving 1000u+ v = 7uv.

Hence, u =
v

7v − 1000
.

As u is a three-digit number, we have that 100 ≤ u ≤ 999.
Solving the inequality gives v = 143 as the only integer solution.
Substituting it back gives u = 143 as well.

2. An algebraic number is defined to be any real number that is a root of a non-zero poly-
nomial (in one variable) with integer coefficients.
Fill in the blank with the biggest subset A of S = {sin 1◦, cos 1◦} such that all elements
of A are algebraic. (A may be the empty set.)

Answer: {sin 1◦, cos 1◦} or S
Solution:

Claim: cosnθ can be expressed as a polynomial in cos θ with integer coefficients for n ∈ N.
Proof: It is clear that it is true for n = 0, 1.
Assume that it is true for n ≤ k.
Let Tn be the polynomial with integer coefficients such that Tn(cos θ) = cosnθ.
Observe:

cos(k + 1)θ = cos[kθ + θ] = cos kθ cos θ − sin kθ sin θ

= cos kθ cos θ − 1

2
[cos(k − 1)θ − cos(k + 1)θ]

=⇒ cos(k + 1)θ = 2 cos kθ cos θ − cos(k − 1)θ

= 2Tk(cos θ)T1(cos θ)− Tk−1(cos θ)

By induction hypothesis, it is clear that the right hand side is a polynomial in cos θ with
integer coefficients.
Thus, by principle of (strong) mathematical induction, we have proven the claim.
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Now, cos 1◦ satisfies T90(x) = 0.
Thus, cos 1◦ is algebraic. (It is obvious that T90 is not identically zero.)

Similarly, sin 1◦ is also a root of T90(x) = 0. (sin 1◦ = cos 89◦)

3. For n ∈ N, let an denote the number of ordered pairs (a, b) ∈ N2 such that:

1

n
=

1

a
+

1

b

Find the smallest n such that an = 485.
Submit your answer by writing n in its prime factorisation or by writing ‘∞’, if no such
n exists.

Answer: 248 · 32

Solution:

1

n
=

1

a
+

1

b

=⇒ ab = na+ nb

=⇒ n2 = (a− n)(b− n)

The number of solutions (a, b) to the above equation is the number of positive integer
factors that n2 has.
(The negative factors won’t work as one of them would have magnitude greater than n,
giving one of a or b as negative. In the case that both factors are −n, both a and b would
be 0, again a contradiction.)

Let pα1
1 · pα2

2 · · · pαn
n be the prime factorisation of n.

Then, the number of factors of n2 is (2α1 + 1) (2α2 + 1) · · · (2αn + 1).
485 can be written as a product of its factors in the following two ways:
485 = 1× 485 = 5× 97.
1× 485 gives us that α1 = 242. The smallest such number would be n = 2242.
5× 97 gives us α1 = 48 and α2 = 2. The smallest such number would be n = 248 · 32.

It is easy to see that the smaller n is 248 · 32 .

4. If a1, a2, · · · , an are n distinct odd natural numbers, not divisible by an prime greater
than 5, then find the minimum value of the constant L such that:

1

a1
+

1

a2
+ · · ·+ 1

an
≤ L ∀n ∈ N

Answer: 15/8
Solution:
Given any ai, its prime factorisation is ai = 3mi · 5ni where mi, ni are non-negative
integers.
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To infinite sum S of reciprocals of all such possible ais will converge to the following
expression:

S =

(
1

1
+

1

3
+

1

32
+ · · ·

)(
1

1
+

1

5
+

1

52
+ · · ·

)

=⇒ S =

(
1

1− 1/3

)(
1

1− 1/5

)

=⇒ S =
15

8

As all the terms are positive, any finite sum will be less than 15
8
. Moreover, as the sum

converges to 15
8
, it means that we can get arbitrarily close to 15

8
.

Therefore, the value of L is
15

8
.

5. Find the last 8 digits in the binary expansion of 271986.

Answer: 11011001
Solution:
The last 8 digits would be N converted to binary, where N is the remainder left when
271986 is divided 28.

Note that φ(256) = 256

(
1− 1

2

)
= 128, where φ represents the Euler totient function.

Thus, 271986 ≡ 2766 mod 256.
Now,

2766 ≡ (32− 5)66 mod 256

≡ 3266 −
(

66

1

)
3265 · 5− · · · −

(
66

65

)
32 · 565 + 566 mod 256

≡ −
(

66

65

)
32 · 565 + 566 mod 256

(
323 ≡ 0 mod 256

)
Note that 564 ≡ 1 mod 256 since

564 − 1 = (5− 1)(5 + 1)(52 + 1)(54 + 1)(58 + 1)(516 + 1)(532 + 1)

The first term has a factor of 22 and the last 6 terms have a factor of 2. This gives us
that 564 ≡ 1 mod 256.
This gives us that 565 ≡ 5 mod 256 and 566 ≡ 25 mod 256. Thus,

−
(

66

65

)
32 · 565 + 566 ≡ −(66)(32)(5) + 25 mod 256

≡ −(33)(64)(5) + 25 mod 256

≡ −(32)(64)(5)− (64)(5) + 25 mod 256

≡ 25− 320 mod 256

≡ −295 mod 256

≡ 217 mod 256

Thus, 217 is the required N.
This gives us the binary digits as 110110012 .
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6. Let S =
{
z ∈ C

∣∣∣ √22 ≤ Re(z) ≤
√
3
2

}
.

Find the smallest value of p ∈ N such that for all integers n ≥ p, there exists z ∈ S such
that zn = 1.

Answer: 16
Solution:

Let us find the largest integer q such that there exists no z in S with zq = 1. As complex
roots of unity satisfy |z| = 1, the problem is equivalent to there being no roots with

argument between
π

6
and

π

4
. (As these roots occur in conjugate pairs, it is sufficient to

consider only the first quadrant.)

Note that the qth roots have arguments 0, 2π
q
, 4π
q
, · · · , 2πk

q
, · · · , 2π(q−1)

q
.

Note that if q ≥ 24, then 2π
q
≤ π

12
= π

4
− π

6
. Thus, there will exist some k such that

π

6
≤ 2πk

q
≤ π

4
.

For q such that 16 ≤ q < 24, we have that π
6
< 4π

q
≤ π

4
. Therefore, there exists a root

which is also in S.
Thus, we have shown that for all integers q > 15, we will always a z ∈ S such that zq = 1.
Now, observe that if q = 15, then 2π

q
= 2π

15
< π

6
and 4π

q
= 4π

15
> π

4
. Thus, there is no

z ∈ S such that z15 = 1. This means that 15 is the desired value of q and the answer is
q + 1 = 16 .

7. Let b.c denote the greatest integer function.
Find the value of bP c where P is given by:

P :=

99∑
n=1

√
10 +

√
n

99∑
n=1

√
10−

√
n

Answer: 2

Solution: Define S :=
99∑
n=1

√
10 +

√
n and T :=

99∑
n=1

√
10−

√
n
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√
2S =

99∑
n=1

√
20 + 2

√
n

=
99∑
n=1

√
20 + 2

√
(10 +

√
100− n)(10−

√
100− n)

=
99∑
n=1

√
10 +

√
100− n+ 2

√
(10 +

√
100− n)(10−

√
100− n) + 10−

√
100− n

=
99∑
n=1

√(√
10 +

√
100− n+

√
10−

√
100− n

)2

=
99∑
n=1

√
10 +

√
100− n+

√
10−

√
100− n

=
99∑
n=1

√
10 +

√
n+

√
10−

√
n (n 7→ 100− n)

= S + T

=⇒
√

2S = S + T

=⇒ S

T
=
√

2 + 1 = P

∴ bP c = 2

8. An equilateral triangle is divided into smaller equilateral triangles.
The figure shows that it is possible to divide it into 4 and 13 equilateral triangles. What
are the integer values of n, where n > 1, for which it is possible to divide the triangle into
n smaller equilateral triangles?

Answer: N \ {1, 2, 3, 5}
Solution:

Let’s call the equilateral triangle which is to be divided into smaller equilateral triangles
the original triangle. Let’s start with n = 2. Is there a way of dividing the original trian-
gle into two smaller ones? We can’t draw a line from a vertex, since this would produce
angles less than 60◦. But if we draw a single line that draws an equilateral triangle, as
in (a) below, we create another quadrilateral in the original triangle, not a triangle. So n
cannot be 2.
If we were going to be able to divide the quadrilateral in (a) into equilateral triangles, we
could only divide it into an odd number of equilateral triangles, as in (b), which divides
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into 5 smaller equilateral triangles. Since there is no way to divide the remaining quadri-
lateral into an even number of triangles, we can’t divide it into either 2 or 4 triangles, so
we can also rule out n = 3 and n = 5.
The case for n = 4 is given in the question and so n = 4 is possible.
Diagram (b) shows the case for n = 6. Any of the smaller equilateral triangles in this
diagram can be split into 4 equilateral triangles, which has the effect of adding 3 to the
total number of triangles. (Diagram (c) is (b) with the top triangle divided into 4.) We
can continue in this fashion in order to create cases when n = 9, 12, 15, . . . Therefore, it
is possible to split the original triangle into n smaller equilateral triangles where n is a
multiple of 3, (excluding n = 3).
Therefore, is is possible to divide the triangle into n smaller equilateral triangles for all
positive integer values of n, excluding 2, 3 and 5. The answer follows by noting that n > 1
was given.

9. Find all the values of a in {2, 3, . . . , 999} for which a2 − a is divisible by 1000.

Answer: 376, 625
Solution:

We have 1000 = 8 × 125 as product of prime powers. We have 1000|a2 − a if and only
if 125|a(a− 1) and 8|a(a− 1). Because a and a− 1 cannot share a factor, in turn this is
equivalent to having both the conditions (1) 625|a or 625|a−1 AND (2) 16|a and 16|a−1.
Now if the coprime integers 8 and 125 both divide the same natural number (in our case
a or a− 1), their product 1000 will also divide this number. In our case, this would force
a = 0, 1, or ≥ 1000, all of which are not allowed. Thus, the given requirement on a is
equivalent to having either (1) 8|a and 125|a− 1 OR (2) 8|a− 1 and 125|a. Each case has
a unique solution, respectively a = 376 and a = 625.
Using modular arithmetic to solve (1), we get: a = 125k + 1 = 120k + (5k + 1). This
gives us that 5k + 1 ≡ 0 mod 8 or 3k ≡ 1 mod 8, forcing k = 3, given the constraint.
Similarly, (2) can be solved.

10. All the terms in the sequence (an) are positive real numbers and the sequence (an) satisfies
the equation below for all positive integers n :

n∑
k=1

ak =
1

2

(
an +

1

an

)
.

Find the value of
100∑
k=1

ak.
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Answer: 10
Solution:

Let sn =
n∑
k=1

ak. Then we have

sn+1 =
1

2

(
an+1 +

1

an+1

)
2(sn + an+1) = an+1 +

1

an+1

[sn+1 = sn + an+1]

a2n+1 + 2snan+1 − 1 = 0

an+1 =
√
s2n + 1− sn

sn+1 =
√
s2n + 1

s2n+1 = s2n + 1

Since s1 = a1, we have a1 =
1

2

(
a1 +

1

a1

)
=⇒ a1 = 1 = s1. Then we have:

s22 = s11 + 1 = 2

s23 = s12 + 1 = 3

...

s2100 =100

Thus,
100∑
k=1

ak = s100 = 10 .
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2 Rapid Fire

Q 2.1. Find the sum of all natural numbers a such that a2 − 16a+ 67 is a perfect square.

Answer: 16
By hypothesis,

a2 − 16a+ 67 = p2 For some p ∈ Z
=⇒ (a− 8)2 − p2 = −3

=⇒ (a− 8− p)(a− 8 + p) = −3

The only ways to factorise −3 into two factors along with the corresponding pairs (a, p) are:
1. 1×−3 −→ (7,−2)
2. −1× 3 −→ (9, 2)
3. −3× 1 −→ (7, 2)
4. 3×−1 −→ (9,−2)

Thus, the desired sum is 7 + 9 = 16 .

Q 2.2. The graph of a monotonically increasing continuous function is cut off with two
horizontal lines. Find a point on the graph between intersections such that the sum of the two
areas bounded by the lines, the graph and the vertical line through the point is minimum. See
figure.

w(t, f(t))

Minimise the area

Answer: The point on the graph that lies on the middle line between and parallel to the two
lines.

Let us first label the start and end points. We may assume the start point to be (0, 0) and
the end-point to be (a, w). This is consistent with the fact that the distance between the lines
is w.
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w(t, f(t))

(0, 0)

(a, w)

Let (t, f(t)) be the point which minimises the area. We may write area as a function of t,

A(t) =

∫ t

0

f(x)dx+

∫ a

t

(w − f(x))dx

As we wish to minimise this area, we’ll set
d

dt
A(t) = 0

A′(t) = f(t)− w + f(t) (Using Fundamental Theorem of Calculus)

A′(t) = 2f(t)− w

∴ A′(t) = 0 =⇒ f(t) =
w

2

Thus, the required point is the point on the function that lies on the middle line between and
parallel to the two lines.
To see that this is in fact a minimum, note that f is an increasing function. So, the derivative
A′(t) goes from negative to positive giving us the required minimum.
Note that we cannot differentiate A′(t) and use the second derivative test as f may not be
differentiable. Also, we could use the Fundamental Theorem of Calculus as f was continuous.
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Q 2.3. Find the remainder left when (2500)(98!)2 is divided by 101.

Answer: 19
Since 101 is prime, 100! ≡ −1 mod 101, by Wilson’s Theorem.

100! ≡ −1 mod 101

=⇒ 100! ≡ 100 mod 101

=⇒ 99! ≡ 1 mod 101

=⇒ 98! ≡ 99−1 mod 101

To calculate the modular inverse of 99, observe the following:

99 ≡ −2 mod 101

=⇒ 99 · 50 ≡ −2 · 50 mod 101

=⇒ 99 · 50 ≡ −100 mod 101

=⇒ 99 · 50 ≡ 1 mod 101

=⇒ 99−1 ≡ 50 mod 101

This gives us that 98! ≡ 50 mod 101.
Therefore, (98!)2 ≡ 2500 ≡ −25 mod 101.
This gives us (2500)(98!)2 ≡ (2500)(−25) ≡ 625 ≡ 19 mod 101.

Q 2.4. Find the following limit:

lim
x→0

sin tan arcsinx− tan sin arctanx

tan arcsin arctanx− sin arctan arcsinx

Answer: 1
We have to calculate a limit of the form

lim
x→0

f(x)− g(x)

g−1(x)− f−1(x)
.

Details are left to the reader. (Think about the graph and the behaviour near 0.)
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Q 2.5. Find the minimum value of | sinx+ cosx+ tanx+ cotx+ secx+ cosecx| for real x.

Answer: 2
√

2− 1
Put x = y− 3π

4
. Then, sinx = −(cos y+sin y)/

√
2, cosx = −(cos y−sin y)/

√
2, so sinx+cosx =

−
√

2 cos y.
Similarly, tanx+ cotx = (sinx cosx)−1 = 2(cos2 y − sin2 y)−1 = 2(2 cos2 y − 1)−1.
Also, sec x+ cosecx = −2

√
2 cos y(2 cos2 y − 1)−1.

Substituting
√

2 cos y = c, we get:

sinx+ cosx+ tanx+ cotx+ secx+ cosecx = −c− 2

c+ 1
= −(c+ 1)− 2

c+ 1
+ 1

If c+ 1 is positive, we have:

c+ 1 +
2

c+ 1
≥ 2
√

2 (AM ≥ GM) (1)

−(c+ 1)− 2

c+ 1
≤ −2

√
2 (2)

−c− 2

c+ 1
≤ 1− 2

√
2 < 0 (3)

∴

∣∣∣∣−c− 2

c+ 1

∣∣∣∣
min

= 2
√

2− 1 (After verifying that equality is in fact possible.) (4)

If c+ 1 is negative, we have:

−(c+ 1)− 2

c+ 1
≥ 2
√

2 (5)

−c− 2

c+ 1
≥ 1 + 2

√
2 > 0 (6)

∴

∣∣∣∣−c− 2

c+ 1

∣∣∣∣
min

= 2
√

2 + 1 (7)

As 2
√

2− 1 < 2
√

2 + 1, the final answer is 2
√

2− 1 .
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Q 2.6. Let’s start with an ordered pair of integers, (a, b). We start a process, where we keep
applying the following transformation T :

T (a, b) =

{
(2a, b− a) if a < b
(a− b, 2b) otherwise

We say that the process terminates for a given pair (a, b) if there exists an n ∈ N such that
T n(a, b) = T n+1(a, b),
where T n denotes the composition of T with itself n times.
For which of the given pairs does the process terminate?

1. (24, 101)
2. (97, 31)
3. (34, 56)
4. (19, 79)

Answer: (97, 31)
It is not tough to see that T (a, b) = (a, b) iff a = 0 or b = 0.
Also, observe that sum of the elements of the ordered pair does not change under the transfor-
mation. We shall denote this sum by s.
Therefore, the process terminates iff T n(a, b) = (0, s) or (s, 0).

Now, let us observe the first element of the ordered pair.
If a < n/2, then a 7→ 2a, else a 7→ 2a− s.
Thus, if we look at the sequence of remainders left when the first element is divided by s, we
get the sequence:

a, 2amod s, 22amod s, 23amod s, · · ·

As the process terminates iff the first element is 0 or n, the remainder must be 0.
Thus, there must exist k ∈ N such that 2ka ≡ 0 mod n.

It is easy to see that (97, 31) is the only such pair with k = 7.
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Q 2.7.
√

3√
5− 3√

4× 3 =
3√
a+

3√
b− 3√

c where a, b, c are positive integers. What is the value
of a+ b+ c?

Answer: 47
Let x, y, v be positive reals such that x3 = 5, y3 = 4, v3 = 2. So y = v2, y2 = 2v, vy = 2.

(x− y)(x+ y)2 = x3 − y3 + x2y − xy2 = 1 + (xv)2 − 2xv = (xv − 1)2

Hence,

9
√
x− y =

√
(x− y)(x3 + y3) =

√
(x− y)(x+ y)2(x2 − xy + y2)

= (xv − 1)(x2 − xy + y2) = x3v − xvy + xvy2 − x2 + xy − y2

= 3v + 3xy − 3x2 = 3(v + xy − x2)
=⇒ 3

√
x− y = v + xy − x2

That is, √
3
√

5− 3
√

4× 3 =
3
√

2 +
3
√

20− 3
√

25

This gives us that a+ b+ c = 2 + 20 + 25 = 47
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Q 2.8. Let S be a finite non-empty set of real positive numbers.
If S contains at least n elements, it is guaranteed that there are elements x, y ∈ S such that

0 <
y − x
1 + xy

<
√

2− 1

What is the smallest such n?

Answer: 5
We have it that x < y. Let x = tanα and y = tan β where 0 < α < β < π

2
.

Note that tan :
(

0,
π

2

)
−→ R+ is an order preserving bijection.

With this substitution, we have
y − x
1 + xy

= tan(β − α).

We need tan(β − α) < tan
(π

8

)
.

This is equivalent to β − α < π

8
.

Now, note that that interval
(

0,
π

2

)
can be written as a disjoint union of intervals in the

following manner: (
0,
π

2

)
=
(

0,
π

8

]
∪
(π

8
,
π

4

]
∪
(
π

4
,
3π

8

]
∪
(

3π

8
,
π

2

)
If n ≥ 5, there would have to be two distinct elements which are in the same interval. (By
PHP). This would ensure that their difference is less than π/8 and thus, we’d have x and y
satisfying the given inequality.
Now, we have to show that if n = 4, there does exist a set S such that no two distinct el-
ements of the set satisfy the inequality. This can be easily demonstrated by taking the set:

S =

{
tan
( π

16

)
, tan

(
3π

16

)
, tan

(
5π

16

)
, tan

(
7π

16

)}
.

Thus, the smallest such n is 5 .
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Q 2.9. Starting with the vertices P1 = (0, 1), P2 = (1, 1) P3 = (1, 0), P4 = (0, 0) of a square,
we construct further points as follows:

Pn is the midpoint of the line segment Pn−4Pn−3 for n ≥ 5.

The spiral approaches a point P = lim
n→∞

Pn. Find P.

Answer:

(
4

7
,
3

7

)
Let Pn = (xn, yn).

Note that P = lim
n→∞

Pn =
(

lim
n→∞

xn, lim
n→∞

yn

)
.

By definition, we have that xn = 1
2
(xn−4 + xn−3) and yn = 1

2
(yn−4 + yn−3) for n ≥ 5.

We can prove via induction that 1
2
xn + xn+1 + xn+2 + xn+3 = 2.

The case n = 1 is immediate as 1
2
· 0 + 1 + 1 + 0 = 2.

Assume that the result holds for n = k − 1 ≥ 1, then:

1

2
xk + xk+1 + xk+2 + xk+3 =

1

2
xk + xk+1 + xk+2 +

1

2
(xk−1 + xk) (∵ k + 3 ≥ 5)

=
1

2
xk−1 + xk + xk+1 + xk+2

= 2 (by induction hypothesis)

Assuming convergence, we may now write:

lim
n→∞

(
1

2
xn + xn+1 + xn+2 + xn+3

)
=

7

2
· lim
n→∞

xn = 2

=⇒ lim
n→∞

xn =
4

7
.

A similar argument works for yn with the invariant 1
2
yn + yn+1 + yn+2 + yn+3 = 3

2
.

This gives us lim
n→∞

yn =
3

7
.

Thus, P =

(
4

7
,
3

7

)
.

Note that we have simply assumed convergence. It is not too tough to show that xn and
yn actually do converge.
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Q 2.10. Arrange the integers 1, 2, 3, · · · , 10 in some order, and get the sequence a1, a2, a3, · · · , a10.
The sequence satisfies that the unit digit of an + n are all different for n = 1, 2, 3, · · · , 10.
How many such arrangements are possible?

Answer: 0
We are adding all the integers 1, 2, 3, · · · 10 at least once in some order, and adding all the ns
of a1, a2, a3, · · · a10 in dome order, for a total of 1 + 2 + 3 + · · ·+ 10 + 1 + 2 + 3 + · · ·+ 10 = 90,
so the sum of all the unit digits of an + n must end in 0.
However, since all 10 unit digits of an + n must be different, all 10 unit digits 0, 1, 2, · · · , 9 are
represented, but, 0 + 1 + 2 + · · ·+ 9 = 45, which ends in 5, not 0.
Therefore, 0 arrangements are possible.

Q 2.11. In how many ways can we transform f(x) = x2 + 4x+ 3 into g(x) = x2 + 10x+ 9
by a sequence of transformations of the form

f(x) 7→ x2f

(
1

x
+ 1

)
or

f(x) 7→ (x− 1)2f

(
1

x− 1

)
?

(You may answer with infinite as well.)

Answer: 0
Observe that both the transformations keep the discriminant invariant. As f and g have distinct
determinants, it is not possible. Thus, the answer is 0 .
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Q 2.12. You are given a rope of length 1. You pick a real number x randomly from (0, 1)
with uniform distribution. You then cut as many segments of length x as possible. In other
words, you cut the length nx where n is the largest integer such that nx ≤ 1.
What is the expected length of the rope remaining?

Answer: 1− π2

12

Let L : (0, 1) −→ R be a function such that L(x) denotes the length of the rope left when
x is chosen. It is easy to see that:

L(x) = 1−
⌊

1

x

⌋
x

The expected length will be given by: ∫ 1

0

L(x)dx∫ 1

0

dx

.

The denominator is simply 1, the numerator can be evaluated as follows:∫ 1

0

L(x)dx =

∫ 1

1/2

(1− x)dx+

∫ 1/2

1/3

(1− 2x)dx+

∫ 1/3

1/4

(1− 3x)dx+ · · ·

=
∞∑
n=1

∫ 1/n

1/(n+1)

(1− nx)dx

=
∞∑
n=1

(
1

n
− 1

n+ 1
− n

2

(
1

n2
− 1

(n+ 1)2

))
=
∞∑
n=1

(
1

n
− 1

n+ 1
− 1

2n
+

n

2(n+ 1)2

)
=
∞∑
n=1

(
1

2n
− 1

n+ 1
+
n+ 1− 1

2(n+ 1)2

)
=
∞∑
n=1

(
1

2n
− 1

2(n+ 1)
− 1

2(n+ 1)2

)
=

1

2

∞∑
n=1

(
1

n
− 1

n+ 1

)
− 1

2

∞∑
n=1

(
1

(n+ 1)2

)
=

1

2
(1)− 1

2

(
π2

6
− 1

)
= 1− π2

12
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Q 2.13. For an arbitrary n, let g(n) be the GCD of 2n + 1 and 2n2 + 7n + 17. What is the
largest positive integer that can be obtained as the value of g(n)? If g(n) can be arbitrarily
large, state so explicitly.

Answer: 7
Long division gives 2n2 + 7n+ 17 = (2n+ 1)(n+ 3) + 14.
By Euclidean algorithm, GCD(2n2 + 7n+ 17, 2n+ 1) = GCD(2n+ 1, 14).
Thus, g(n) divides 14. But since g(n) dives 2n + 1, which is odd, g(n) divides 7. Therefore,
g(n) ≤ 7.
The fact that 7 can actually be obtained follows from n = 3 =⇒ 2n+ 1 = 7.

Q 2.14. Let x ∈ C be such that

x+ x−1 =

√
5 + 1

2
.

What is the value of x2019 + x−2019?

Answer:

√
5 + 1

2

Given, x+ x−1 = 2 cos
(π

5

)
.

By inspection, the solutions to the above equation are exp
(
±iπ

5

)
. As the solutions are recip-

rocals, we can take any one solution and evaluate x2019 + x−2019.
Taking x = eiπ/5, we have x2019 = e2019iπ/5.

Thus, x2019 + x−2019 = 2 cos

(
2019π

5

)
= 2 cos

(π
5

)
=

√
5 + 1

2
.

Q 2.15. 100 numbers 1, 1/2, 1/3, · · · 1/100 are written on the blackboard. One may delete
two arbitrary numbers a and b among them and replace them by the number a+b+ab. After 99
such operations, only one number is left. What are all the possible values of the final number?

Answer: 100
The idea is to look for a function of the numbers on the blackboard which remains invariant
when two numbers a, b are replaced by a single number a+ b+ ab. Now

(1 + a)(1 + b) = (1 + a+ b+ ab),

so a function which remains invariant is the product

P = (1 + a1)(1 + a2) · · · (1 + an),

where a1, a2, . . . , an are the numbers currently on the blackboard. Initially,

P = (1 + 1)

(
1 +

1

2

)(
1 +

1

3

)
· · ·
(

1 +
1

1000

)
= (2)

(
3

2

)(
4

3

)
· · ·
(

100

99

)(
101

100

)
= 101.
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Finally,
P = 1 + A

where A is the final number on the board. Thus, A = 100 is only possibility.
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Q 2.16. A function f : Z −→ Z satisfies f(m+ n) = mn+ f(m) + f(n) + 1.

Find the value of
24∑

n=−24

f(n).

Answer: 4851
P (m,n) : f(m+ n) = mn+ f(m) + f(n) + 1
P (0, 0) =⇒ f(0) = −1
P (−n, n) =⇒ f(−n) + f(n) = n2 − 2
Now, we have

24∑
n=−24

f(n) = f(0) +
24∑
n=1

(f(−n) + f(n))

= f(0) +
24∑
n=1

(n2 − 2)

= f(0) +
(24)(25)(49)

6
− 2(24)

= −1 + 4900− 48

= 4851

Q 2.17. The sequence (an) is defined as follows: a1 = 1, a2 = 2 and

an+2 =
2

an+1

+ an for n ≥ 1.

What is a100 · a101?

Answer: 200
Re-arranging gives us: an+2an+1 − an+1an = 2.

99∑
n=1

(an+2an+1 − an+1an) =
99∑
n=1

2

=⇒ a101a100 − a2a1 = 198

=⇒ a101a100 = 200

Q 2.18. Let Hn =
n∑
k=1

1

k
and Tn =

1

(n+ 1)HnHn+1

.

Evaluate
∞∑
n=1

Tn.

Answer: 100

Observe that Hn+1 = Hn +
1

n+ 1
, or

1

n+ 1
= Hn+1 −Hn.

Tn =
1

n+ 1

1

HnHn+1

=
Hn+1 −Hn

HnHn+1

=
1

Hn

− 1

Hn+1

.
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Thus, we have
n∑
k=1

Tn =
1

H1

− 1

Hn+1

.

As the harmonic series diverges, lim
n→∞

1

Hn

= 0 giving us
∞∑
n=1

Tn = 1 .

Q 2.19. Evaluate the following expression and give your answer in the simplest form:

1

2 +
1

3 +
1

4 +
1

· · ·+
1

2019

+
1

1 +
1

1 +
1

3 +
1

4 +
1

· · ·+
1

2019

.

Answer: 1

Let x =
1

3 +
1

4 +
1

· · ·+
1

2019

.

Then, the expression reduces to
1

2 + x
+

1

1 + 1
1+x

=
1

2 + x
+

1 + x

2 + x
= 1 .

Q 2.20. Six numbers are placed on a circle. For every number A on the circle, we have:
A = |B −C|, where B and C follow A clockwise. The total sum of the numbers equal 1. State
the numbers in cyclic order, starting with the smallest.

Answer: 0, 1/4, 1/4, 0, 1/4, 1/4
Let the numbers be A, B, C, D, E and F in clockwise order. They are all non-negative. We
may assume that A is no smaller than any of the other five. We have either A = B − C or
A = C −B.
Suppose A = B − C. Then, we must have B = A and C = 0.
=⇒ F = |A−B| = 0 =⇒ E = |A− F | = A =⇒ D = |E − F | = A.
If A = C −B, then C = A and B = 0.
=⇒ F = |A−B| = A =⇒ E = |A− F | = 0 =⇒ D = |E − F | = A.
In either case, two of the numbers are 0 and are diametrically opposite each other. The other
four are equal to each other. Since their sum is 1, each is 1/4.
Thus, the required sequence is - 0, 1/4, 1/4, 0, 1/4, 1/4.
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Q 2.21. Find the smallest positive real number c such that the following inequality holds for
all non-negative reals x and y :

√
xy + c|x− y| ≥ x+ y

2

Answer:
1

2
If x = y, it is clear that any value of c works. Assume x > y. Then we have:
√
xy + c(x− y) ≥ x+ y

2

=⇒ 2c(x− y) ≥
(√

x−√y
)2

=⇒ 2c ≥
√
x−√y
√
x+
√
y

= 1−
2
√
y

√
x+
√
y

Thus, any 2c ≥ 1 will satisfy the inequality. If y = 0, then c = 1/2 is actually required.
Thus, c = 1/2 is the minimum positive real.

Q 2.22. Solve the following inequality for positive x :

x(8
√

1− x+
√

1 + x) ≤ 11
√

1 + x− 16
√

1− x.

Answer:

[
3

5
, 1

]
First, observe that for x > 1, some of the terms become undefined. Thus, we must have that
x ≤ 1.
Define y as follows:

y =

√
1− x
1 + x

.

Observe that:

x =
1− y2

1 + y2
.

Given the above preliminaries, our inequality transforms as follows:

x(8
√

1− x+
√

1 + x) ≤ 11
√

1 + x− 16
√

1− x

x

(
8

√
1− x
1 + x

+ 1

)
≤ 11− 16

√
1− x
1 + x

1− y2

1 + y2
(8y + 1) ≤ 11− 16y

(1− y2)(8y + 1) ≤ (11− 6y)(1 + y2) (∵ 1 + y2 > 0)

−8y3 − y2 + 8y + 1 ≤ −16y3 + 11y2 − 16y + 11

−8y3 + 12y2 − 24y + 10 ≥ 0

(2y − 1)
(
4y2 − 4y + 10

)
≤ 0

Now, 4y2 − 4y + 10 is always positive. Thus, the inequality reduces simply to: 2y − 1 ≤ 0.

Observe the fact that y is monotonically decreasing in x and
1− (1/2)2

1 + (1/2)2
=

3

5
.

Our final answer is hence, x ∈
[

3

5
, 1

]
.
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Q 2.23. Let p be an odd prime. Let x and y with x < y be positive integers that satisfy

2xy = (x+ p)(y + p).

What is the sum of all possible values of x?

Answer: 4p+ 3
2xy = (x+ p)(y + p) ⇐⇒ 2xy = xy + px+ py + p2 ⇐⇒ xy − px− py + p2 = 2p2

⇐⇒ (x− p)(y − p) = 2p2.
As p > 2, 2p2 has 6 distinct positive factors which are 1, 2, p, 2p, p2, 2p2.
As 0 < x < y, the values that x−p can take are 1, 2, p. This gives us the values of x as p+1, p+2
and 2p. Thus, the sum is 4p+ 3 .

Q 2.24. For any positive integer n, let s(n) denote the number of ways that n can be written
as a sum of 1s and 2s, where the order matters.
As an example, s(3) = 3 as 3 = 1 + 1 + 1 = 1 + 2 = 2 + 1.
Evaluate

lim
n→∞

s(n− 1)

s(n)
.

Answer:

√
5− 1

2
It is clear that s(1) = 1 and s(2) = 2.

Let us try to evaluate s(n) for n ≥ 3.
Given any sum, the last number in the sum is either 1 or 2. How many sums are there are end
with 1? This is simple to calculate as the remaining numbers must add up to n − 1 and this
can be done in s(n− 1) ways. Similarly, there are s(n− 2) sums that end with a 2.
As these two cases are exclusive and exhaustive, we have it that s(n) = s(n− 1) + s(n− 2).
This is nothing but the Fibonacci sequence, just shifted.
Thus, we have it that

lim
n→∞

s(n− 1)

s(n)
=

(√
5 + 1

2

)−1
=

√
5− 1

2
.
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3 Brief Thought

Q 3.1. Prove that the probability that an integer is prime is 0. In other words, prove that if
π(N) denotes the number of primes ≤ N, then

lim
N→∞

π(N)

N
= 0.

Denote the first m primes by p1, p2, · · · , pm. We will choose the value of m later.
The number of positive integers ≤ N which are not divisible by any of the primes p1, p2, · · · , pm
is:

N −
⌊
N

p1

⌋
−
⌊
N

p2

⌋
− · · · −

⌊
N

pm

⌋
+

⌊
N

p1p2

⌋
+ · · ·+

⌊
N

pm−1pm

⌋
−
⌊

N

p1p2p3

⌋
− · · ·+ (−1)m

⌊
N

p1p2 · · · pm

⌋
The primes p such that pm < p ≤ N are not divisible by p1, · · · pm and are therefore counted in
the above expression.
Since there are π(N)−m such primes p, we have

π(N) ≤ m+N −
⌊
N

p1

⌋
− · · · −

⌊
N

pm

⌋
+ · · ·+ (−1)m

⌊
N

p1 · · · pm

⌋
(1)

On the right side of (1), there are

(
m

1

)
+

(
m

2

)
+ · · · +

(
m

m

)
= 2m − 1 brackets, of which(

m

1

)
+

(
m

3

)
+

(
m

5

)
+ · · · = 2m−1 are preceded by a minus sign. Now suppose we remove all

the brackets in (1). Since bac ≤ a for any number a, the positive terms will be increased. And
since bac > a− 1, each negative term will be decreased by at most 1.

Therefore

π(N) ≤ m+ 2m−1 +N − N

p1
− · · · − N

pm
+

N

p1p2
+ · · ·+ (−1)m

N

p1 · · · pm

= m+ 2m−1 +N

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pm

)
.

Since m ≤ 2m−1, we have

π(N) ≤ 2m +N

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pm

)
and therefore

π(N)

N
≤ 2m

N
+

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pm

)
Now, we choose m in such a way that as N tends to infinity, m also tends to infinity but

2m/N → 0. For example, such a choice of m would be
⌊
log2

√
N
⌋
.

To complete the proof, we only need to show that

lim
m→∞

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pm

)
= 0
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By the formula for the sum of a geometric progression, we have

1

1− 1
p

>
1− 1

pk+1

1− 1
p

= 1 +
1

p
+

1

p2
+ · · · 1

pk

where k is any positive integer. Therefore(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pm

)
>

(
1 +

1

p1
+

1

p21
+ · · · 1

pk1

)
×
(

1 +
1

p2
+

1

p22
+ · · · 1

pk2

)
× · · · ×

(
1 +

1

pm
+

1

p2m
+ · · · 1

pkm

)
Expanding this last product, we obtain a sum of fractions all having numerator 1 but various
integers for their denominators. If k = m, every integer ≤ m will appear as one of these de-
nominators, because every integer ≤ m can be factored into a product of powers of p1, p2, · · ·m.
Therefore

1(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pm

) > 1 +
1

2
+

1

3
+ · · · 1

m

and so (
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pm

)
<

1

1 +
1

2
+

1

3
+ · · · 1

m

(2)

As m→∞, the right hand side of (2) tends to 0.
It is clear that the left hand side is always positive. Therefore, by Sandwich Theorem, we have
it that

lim
m→∞

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pm

)
= 0,

completing the proof.
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Q 3.2. The circumference of a circle is divided into p equal parts by the points A1, A2, · · ·Ap,
where p is an odd prime number. How many different self-intersecting p-gons are there with
these points as vertices if two p-gons are considered different only when neither of them can be
obtained from the other by rotating the circle? (A self-intersecting polygon is a polygon some
of whose sides intersect at other points besides the vertices).

Answer: N =
1

2

{
(p− 1)! + 1

p
+ p− 4

}
Let the points be A0, A1, A2, · · · , Ap−1 going around the circle in a the counterclockwise di-
rection. Put Ap = A0, Ap+1 = A1, · · · , A2p = A0, A2p+1 = A1, etc. Let us first compute how
many self-intersecting polygons there are with vertices at A0, A1, · · ·Ap−1, counting two poly-
gons as different if they are different in shape or location. To obtain a polygon, we join A0 to
any other point Ai1 other than A0, then join Ai1 to any point Ai2 other than A0 and Ai1 , and
continue in this way until all the points are exhausted; then we join the last point Aip−1 to A0.
The point Ai1 can be chosen in (p − 1) ways; once it is chosen, Ai2 can be chosen in (p − 2)
ways and so on.
Therefore, the total number of ways of choosing the sequence Ai1 , Ai2 , · · ·Aip−1 is (p− 1)!.
Note, however, each polygon is obtained exactly twice in this way as A0Ai1Ai2 · · ·Aip−1A0 is
the same as A0Aip−1Aii−1

· · ·Ai1A0 but it differs from all other p−gons.
Thus, the total number of p−gons with the given points as vertices is (p− 1)!/2. Among these
p−gons, exactly one is not self-intersecting, namely A0A1A2 · · ·Ap−1A0. The others have at least
one pair of sides which cross at an interior point. Therefore the number of self-intersecting poly-
gons is (p − 1)!/2 − 1. This is not the answer to the problem because some of these polygons
can be obtained from others by rotating the circle.
We will say that two polygons P and Q are equivalent if they can be obtained from each other
by rotating the circle; we then write P ∼ Q.
The set of all self-intersecting polygons is now broken up into classes by putting P and Q in
the same class whenever P ∼ Q. The class in which a polygon P lies consists of all polygons
equivalent to P ; it is called the equivalence class of P. Our problem is to determine the number
of equivalence classes.
Let P0 be any polygon, and denote by P1, P2, · · · , Pp−1 the polygons obtained by rotating P0

counterclockwise through angles of 360◦/p, 2(360◦/p), · · · , (p − 1)(360◦/p). We will prove that
P0, P1, · · · , Pp−1 are either all different or all the same.

Suppose they are not all different, so that Pi = Pj, where 0 ≤ i < j ≤ p− 1. Putting k = j − i,
it follows that Pi is unchanged when the circle is rotate through k · (360◦/p), where 0 < k < p.
This means that if A0 is joined to some point At is in the polygon Pi, then Ak must be be joined
to Ak+t, A2k must be joined to A2k+t, etc. We can show that all points A0, Ak, A2k, · · · , A(p−1)k
are all different. For if Alk = Amk, where 0 ≤ l < m ≤ p− 1, then mk− lk = (m− l)k must be
a multiple of p. This is a contradiction as 0 < k < p, 0 < m− l < p and p is a prime.
Thus, every vertex As is joined to As+t, so that the polygon Pi is regular. In this case, it is
clear that

P0 = P1 = · · · = Pp−1.

We have now shown that the equivalence class of a non-regular polygon has p members, while
that of a regular polygon has only one member. The next step is to determine how many
regular self-intersection p−gons there are. WE saw that in a regular polygon, each vertex As
is joined to As+t, where t is a fixed number satisfying t ≤ 1 ≤ p− 1. But each regular polygon
will appear twice in this process, since t and p− t give rise to the same polygon (t 6= p− t as p
is odd). Therefore there are (p − 1)/2 regular polygons; since exactly one of these is non-self-

26



intersecting, there are (p− 1)/2− 1 = (p− 3)/2 self-intersecting regular polygons.

Now, let N denote the total number of equivalence classes of self-intersecting polygons. Recall-
ing that total number of self-intersecting polygons is (p− 1)!/2− 1, we get:(

p− 3

2

)
· 1 +

(
N − p− 3

2

)
· p =

(p− 1)!

2
− 1

Solving for N,

N =
1

2

{
(p− 1)! + 1

p
+ p− 4

}
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Q 3.3. The set of positive integers is represented as a union of pairwise disjoint subsets,
whose elements form infinite arithmetic progressions with positive differences d1, d2, d3, · · · .
Is it possible that the sum

1

d1
+

1

d2
+

1

d3
+ · · ·

does not exceed 0.9? Consider the cases where

(a) the total number of progressions is finite, and

(b) the number of progressions is infinite. (In this case, the condition that

1

d1
+

1

d2
+

1

d3
+ · · ·

does not exceed 0.9 should be taken to mean that the sum of any finite number of terms
does not exceed 0.9.)

Answer: (a) No. (b) Yes.
Let the arithmetic progressions be D1, D2, · · · , having common differences d1, d2, · · · respec-
tively. Also, let a1, a2, · · · be the smallest members of D1, D2, · · · respectively.

(a) Assume that there are m arithmetic progressions.
Let N be an integer greater than a1, a2, · · · , am, and let ki (1 ≤ i ≤ m) be the number
of members of Di less than or equal to N. Then

ai + (ki − 1)d1 ≤ N < ai + kidi, 1 ≤ i ≤ m.

Therefore

ki − 1 ≤ N − ai
di

< ki, 1 ≤ i ≤ m,

and so

ki − 1 ≤ N

di
< ki +

ai
di
, 1 ≤ i ≤ m.

Add all these inequalities. Since

N =
m∑
i=1

ki,

we have

N −m ≤ N
m∑
i=1

1

di
< N +

m∑
i=1

ai
di
,

whence

1− m

N
≤

m∑
i=1

1

di
< 1 +

1

N

m∑
i=1

ai
di
.

Finally, let N −→∞. Then

1 ≤
m∑
i=1

1

di
≤ 1,

since m and
m∑
i=1

ai
di

are constants. Therefore

m∑
i=1

1

di
= 1.

No, it cannot be less than 0.9.
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(b) We will not only show that the result from (a) does not analogously follow but in fact,
given ε > 0, there exists a selection D1, D2, · · · such that

∞∑
i=1

1

di
< ε.

We produce an example. Let n be a positive integer greater than 1. Make the following
inductive hypothesis:
P (k) : There exist disjoint arithmetic progressions

D1, D2, · · · , Dk

with common differences n, n2, · · · , nk whose union contains {1, 2, · · · , k}.

We first note that P (1) is true, letting

D1 = {x ∈ Z+ | x ≡ 1 mod n}.

Now, suppose that P (k) is true for k ≥ 1. Now, D1 ∪D2 ∪ · · · ∪Dk does not exhaust all
the integers. If it did, we would have

k∑
i=1

1

di
=

k∑
i=1

1

ni
=

1

n
·

1− 1
nk

1− 1
n

<
1

n− 1
≤ 1,

contradicting (a).
Let ak+1 be the smallest positive integer not in D1 ∪D2 ∪ · · · ∪Dk. Define

Dk+1 =
{
x ∈ Z+ | x ≡ ak+1 mod nk+1, x ≥ ak+1

}
Then Di∩Dk+1 = ∅ for 1 ≤ i ≤ k since, if not, ak+1 is congruent modulo ni to an element
of Di. But ak+1 > ai, the least element of Di, because ai is, by induction, the least positive
integer not in D1 ∪D2 ∪ · · · ∪Di−1. Moreover, ak+1 ≥ k + 1 since

{1, 2, · · · , k} ⊂ D1 ∪D2 ∪ · · · ∪Dk

by induction. If ak+1 = k+ 1, then ak+1 ∈ Dk+1. Else, k+ 1 ∈ D1 ∪D2 ∪ · · · ∪Dk. In any
case, k + 1 ∈ D1 ∪D2 ∪ · · · ∪Dk+1.
This completes the induction, so P (k) is true for all k ≥ 1.
We immediately have that

Z+ =
∞⋃
i

Di

since

{1, 2, · · · , k} ⊂
k⋃
i

Di

for all k.
Finally, observe that

∞∑
i=1

1

di
=

1

n− 1
.

Given ε > 0, choose n >

⌊
1

ε
+ 1

⌋
and we are done.

From this, it immediately follows that it is indeed possible for the sum to not exceed
0.9.
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Q 3.4. A table has m rows and n columns where m and n are positive integers greater than 1.
The following permutations of its mn elements are permitted: an arbitrary permutation leaving
each element in the same row (a “horizontal move”) and an arbitrary permutation leaving each
element in the same column (a “vertical move”). Find the number k such that any permutation
of mn can be obtained by l permitted moves but there exists a permutation that cannot be
achieved in less than k moves.

Answer: The required value of k is three.
To see that k > 2, consider the permutation

a b
c d

−→ a c
b d

As m,n ≥ 2, we can find a 2× 2 subtable in any such m× n table.
Since b and c have to swap both their row and column positions, at least two “moves” are
needed, one “within rows” and one “within columns”. But a row move must move at least one
of a or d and a column move can not restore it (or them) to its (their) original positions. The
same would be true if the column move were done first. So two moves are insufficient. [That
three moves are enough will follow from the general argument below.]

One way to achieve any permutation in three moves can be derived as follows: First label
every cell in the table with the row number of the cell to which it is to be moved under the
given permutation, then carry out the following:

Move 1 (Within rows) Permute each row so that each column contains cells labelled with
a complete set of row numbers. [That this can always be achieved is the main burden of proof,
which we shall do below.]

Move 2 (Within columns) Permute each column so that the labels on all the cells in the
first row are 1, all in the second are 2, and so on. [This can obviously be done, given Move 1.]

Move 3 (Within rows) Permute each row so that every cell is where the given permutation
requires. [Given that Moves 1 and 2 have shifted every cell to its correct destination row, Move
3 can obviously be done.]

It must now be established that Move 1 is possible. The labelling fills the mn cells of the
table with a random pattern of n 1s, n 2s, ... and n ms. It will presently be established that
despite the randomness of this pattern, it is always possible to choose one cell from each row
so that the resulting collection of cells is labelled 1, 2, . . . ,m in some order. (∗)
Let Πn be the row move which swaps each of these cells with the last cell in its row. After Πn

is applied to the table, column n has the required property and columns 1, . . . , n − 1 form an
m× (n− 1) table filled with a random pattern of (n− 1) 1s, (n− 1) 2s, ..., and (n− 1) ms.
By the same argument there is then a row move Πn−1 which gives column n− 1 of this reduced
table the required property and leaves columns 1 to n − 2 forming a new table to which the
same process can be applied, and so on. The composite permutation Π1 ◦ Π2 ◦ · · · ◦ Πn (first
do Πn, then Πn−1 et cetera) can be considered as acting on the whole original m× n table and
is still a row move; so it is the required Move 1.

(∗) It remains to prove the crucial assertion “from an m × n table filled with n copies of i
for i = 1, . . . ,m it is possible to select a different number from each row”. Here is a recursive
algorithm for the selection process: Select any number from row 1. Having selected distinct
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numbers from row 1 to k − 1 make the selection for rows 1 to k as follows: If row k contains a
number not already selected from earlier rows, then extend the selection for rows 1 to k− 1 by
selecting that number for row k. If, however, all numbers in row k have already been selected,
(say from rows x1, x2, . . . , xs), then somewhere in these rows there must be a number, say N,
which has not yet been selected, because rows x1 to xs and row k must contain at least s + 1
different numbers (recall there are only n copies of each number in the whole table and there
are n cells in each row). Suppose that row xt (t ≤ s) contains this number N, and that the
number currently selected from row xt is M (which belongs to row k as well). Then the required
selection for rows 1 to k is: M from row k, N from row xt and selections from the remaining
rows as before. This completes the proof.
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4 Challenge

Q 4.1. (Number Theory)
Let S be a subset of positive integers.
n belongs to S if and only if there exists a circle in the XY plane which has exactly n lattice
points in its interior (excluding the boundary).
Describe the set S.

Answer: The set S is in fact, N.
We shall show that given any n ∈ N, there exists a circle with exactly n lattice points in its
interior.
In fact, we construct a family of concentric circles with this property.

First, we shall prove the following claim:

Given two distinct lattice points, their distances from P =

(
22

7
, π

)
are also distinct.

Proof. Let (x1, y1) and (x2, y2) be two lattice points such that they are are equal distances from
P.
We shall show that this is the case if and only if x1 = x2 and y1 = y2.(

x1 −
22

7

)2

+ (y1 − π)2 =

(
x2 −

22

7

)2

+ (y2 − π)2

Case 1. y1 = y2.
Thus, we have: (

x1 −
22

7

)2

=

(
x2 −

22

7

)2

=⇒ x1 = x2 or x1 + x2 =
44

7

As the latter is not possible if x1 and x2 are integers, we have it that y1 = y2 =⇒ x1 = x2.

Case 2. y1 6= y2.

(
x1 −

22

7

)2

+ (y1 − π)2 =

(
x2 −

22

7

)2

+ (y2 − π)2

=⇒ x21 −
44

7
x1 + y21 + 2πy1 = x22 −

44

7
x2 + y22 + 2πy2

=⇒ π =
x21 − x22 −

44

7
(x1 − x2) + y21 − y22

2(y2 − y1)

This is a contradiction as π is not rational.
Thus, we have it that x1 = x2 and y1 = y2. �
Now it is easy to see that increasing the radius of a circle with center at P will cover lattice
points one by one.
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Q 4.2. (Functional Equation)
Let f(x) = xn + a1x

n−1 + · · · + an−1x + an and g(x) = xm + b1x
m−1 + · · · + bm−1x + bm be

two polynomials with real coefficients such that for each real number x, f(x) is the square of
an integer if and only if so is g(x).
Prove that if n + m > 0, there exists a polynomial h(x) with real coefficients such that f(x) ·
g(x) = (h(x))2 .

As f ′ is a polynomial with positive leading coefficients, there is a point after which it is positive
for every real x. Similarly, there exists a point for f as well. Thus, there is a point a such that
f is both increasing and positive for all x ≥ a.
Similarly, there exists such a point for g.
WLOG, assume that a ≥ b.
So, after x = a, both f and g are increasing and positive.
As f is continuous, f(x) hits all integral squares after f(a) exactly once. At each of these points
g(x) is also a square. To make it more precise, there exists a sequence of points such that:
r < ri < ri+1 < ri+2 < · · · so that f(rk) = k2 for k ≥ i. Then, g(ri) = (i+ j)2 for some j ≥ −i.
Then, g(ri+1) = (i+ 1 + j)2, because if it were any other square, then either g won’t be increas-
ing or there’d exist a number x between ri and ri+1 so that g(x) = (i+ 1 + j)2 and f(x) is not
a perfect square.
Likewise, f(ri+k) = (i+ k)2 and g(ri+k) = (i+ k + j)2 for all k ≥ 0.

Consider the polynomial P (x) :=

(
g(x) + f(x)− j2

2

)2

. At x = rk for k ≥ i, P (x) equals

(
g(rk) + f(rk)− j2

2

)2

=

(
(k + j)2 + k2 − j2

2

)2

=

(
2k2 + 2kj

2

)2

= k2(k + j)2 = f(rk)g(rk).

So, for an infinite number of points, P (x) equals f(x)g(x), and hence it is identically equal to
f(x)g(x).

So, we can let h(x) :=
g(x) + f(x)− j2

2
, and we are done.
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Q 4.3. (Combinatorics)
Amy and Sheldon play a game in the following manner:
Amy picks a positive integer N and tells Sheldon.
Sheldon then chooses a collection of eleven (not necessarily distinct) integers (ai)

11
i=1.

Now, Amy must choose a collection (bi)
11
i=1 where each bi is either −1, 0, 1 and at least one bi

is non-zero.

After this, the sum S =
11∑
i=1

aibi is computed. Amy wins the game iff S is divisible by N,

otherwise Sheldon wins.
Assuming Amy and Sheldon play optimally, what is the largest value of N that Amy can pick
such that she can win?

Answer: 2047 or 211 − 1

Claim 1: Amy cannot win if N ≥ 211.

Proof. As Sheldon plays optimally, he can choose the collection ai = 2(i−1) for 1 ≤ i ≤ 11.
Now, we will show that no valid collection (bi) can lead to Amy’s win. This can be demon-
strated as follows:
The maximum value of S is obtained if bi = 1 for all i. Thus, Smax = 1 + 2 + · · ·+ 210 = 211− 1.
Similarly, Smin = − (211 − 1) .
This means that for any collection (bi), |S| < 211 ≤ N.
Thus, S is divisible by N iff S = 0.

=⇒ b1 + 2b2 + 22b3 + · · ·+ 210b11 = 0.

By looking at the remainders mod 2 on both sides, we get that b1 = 0. This gives us that:

=⇒ 2b2 + 22b3 + · · ·+ 210b11 = 0.

Similarly, by considering the remainders mod 22 give us that b2 = 0.
Proceeding in this manner will give us that b1 = b2 = · · · = b11 = 0. A contradiction.

By the above claim, we have it that N ≤ 211 − 1. We will now show that N = 211 − 1 actually
guarantees a win for Amy.

Claim 2: Amy wins if N = 211 − 1.

Proof. Let (ai)
11
i=1 be any arbitrary collection of integers that Sheldon could have chosen.

Consider all possible collections (ci)
11
i=1 where each ci is either 0 or 1.

There are 211 such collections. Compute the sum S ′ =
11∑
i=1

aici for all such collections.

There are 211 (not necessarily distinct) such values of S ′.
Consider the values S ′ mod N. There are only N = 211−1 such values. Thus, by the pigeonhole
principle, there are two distinct collections (c′i) and (c′′i ) such that the sums S ′ corresponding
to them give the same remainder.

Formally, we have that
11∑
i=1

ai(c
′
i − c′′i ) ≡ 0 mod N.

Let bi = c′i − c′′i for each 1 ≤ i ≤ 11. Thus,
11∑
i=1

aibi ≡ 0 mod N, as desired. This is a valid

choice of collection (bi) as bi = −1, 0, 1 for each valid i. Moreover, as c′i and c′′i are distinct,
there is at least one i such that bi 6= 0, completing our proof.
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By the above two claims, we have it that N = 211 − 1 = 2047 is the largest such N.
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Q 4.4. (Geometry)
On a plane, a square is given, and 2019 equilateral triangles are inscribed in this square. All
vertices of any of these triangles lie on the border of the square. Prove that one can find a
point on the plane belonging to the borders of no less than 505 of these triangles.

LetABCD be the square. The equilateral triangles inscribed in it can be classified as (AB,BC,CD),
(BC,CD,DA), (CD,DA,AB) or (DA,AB,BC) according to which three sides of the square
contain their vertices.
A triangle with a vertex at A will come under both (AB,BC,CD) and (BC,CD,DA) and
similarly for triangles with a vertex at B, C or D. Since there are 2019 triangles and four
classes, one of the classes, say (BC,CD,DA), contains at least 505 triangles. Let Q be the
midpoint of CD. Let P on AD and R on BC be such that PQR is an equilateral triangle. Let
E be the midpoint of PR.

D Y Q C

A B

E
P R

Z

X

We claim that if XY Z is an equilateral triangle with X on AD, Y on CD and Z on BC, then
E is the midpoint of XZ. Join Y and draw the line through E perpendicular to EY, cutting
AD at X ′ and BC at Y ′.
Note that EPX ′ and EQY are similar triangles. Hence EX ′/EY = EP/EQ, so that EX ′Y ′

and EPQ are also similar triangles. It follows that EX ′Y is half an equilateral triangles, and
EY Z ′ is the other half by a similar argument. Since the equilateral triangle XY Z is uniquely
determined by Y, we must have X ′ = X and Z ′ = Z.
This justifies our claim as E must be the midpoint of XZ. It follows that E lies on the perimeter
of every triangle in the class (BC,CD,DA), which contains at least 505 triangles.
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Q 4.5. (Inequality)
The numbers 1, 2, . . . , N are written on a board where N is a positive integer strictly greater
than 1729. Sheldon performs an operation where he erases four numbers of the form a, b, c, a+
b+ c and then writes a+ b, b+ c, c+ a in their place.

Prove that he can do this operation no more than

⌊
N(N − 1)

2(2N + 1)

⌋
times.

Note the two identities:
a+b+c+(a+b+c) = (a+b)+(b+c)+(c+a) and a2+b2+c2+(a+b+c)2 = (a+b)2+(b+c)2+(c+a)2.
From these, we get that the sum of numbers on the board and the sum of the squares of the
numbers on the board are invariants.

More specifically, the sum of numbers on the board is always
N(N + 1)

2
and the sum of squares

is always
N(N + 1)(2N + 1)

6
.

Suppose that there are n numbers (a1, a2, . . . , an) on the board at a given instant, we know
that: (

a1 + a2 + · · · an
n

)2

≤ a21 + a22 + · · · a2n
n

Thus, we have (
N(N + 1)

2n

)2

≤ N(N + 1)(2N + 1)

6n
.

Solving for n gives us (
3

2
· N(N + 1)

2N + 1

)
≤ n.

This gives us that

N − n ≤ N −
(

3

2
· N(N + 1)

2N + 1

)
=
N(N − 1)

2(2N + 1)
.

As each operation reduces the number of numbers by 1, we have it that Sheldon can do at most⌊
N(N − 1)

2(2N + 1)

⌋
operations.
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Q 4.6. (Probability) Let n ≥ 4 be given, and suppose that the points P1, P2, . . . , Pn are
randomly chosen on a circle. Consider the convex n−gon whose vertices are these points. What
is the probability that at least one of the vertex angles of this polygon is acute?

The angle at the vertex Pi is acute if and only if all other points lie on an open semicircle facing
Pi. We first deduce from this that if there are any two acute angles at all, they must occur
consecutively. Otherwise, the arcs that these angles subtend would overlap and cover the whole
circle, and the sum of the measures of the two angles would exceed 180◦.
So the polygon either has just one acute angle or two consecutive acute angles. In particular,
taken in counterclockwise order, there exists exactly one pair of consecutive angles the second
which is acute and the first of which is not.
We are left with the computation of the probability that for one of the points Pj, the angle at
Pj is not acute, but the following angle is. This can be done using integrals. But there is a
clever argument that reduces the geometric probability to a probability with a finite number
of outcomes. The idea is to choose randomly n− 1 pairs of antipodal points, and then among
these to choose the vertices of the polygon. A polygon with one vertex at Pj and the other
among these points has the desired property exactly when n − 2 vertices lie on the semicircle
on the clockwise side of Pj and one vertex on the opposite semicircle. Moreover, the points on
the semicircle should include the counterclockwise-most to guarantee that the angle at Pj is
not acute. Hence there are n− 2 favourable choices of the total 2n−1 choices of points from the
antipodal pairs. The probability for obtaining a polygon with the desired property is therefore
(n− 2)2−n+1.
Integrating over all choices of pairs of antipodal pairs preserves the ratio. The events j =
1, 2, . . . , n are independent, so the probability has to be multiplied by n. The answer to
problem is therefore n(n− 2)2−n+1.
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